El próximo viaje tripulado alrededor de la Luna promete marcar un nuevo hito en la exploración espacial, pero también reabre un debate técnico profundo sobre riesgos, decisiones de ingeniería y la forma en que la NASA gestiona la incertidumbre. Detrás del entusiasmo por Artemis II, persiste una pregunta clave: ¿es suficiente lo que hoy se sabe para garantizar un regreso seguro?
El 6 de febrero, si no hay nuevos retrasos, cuatro astronautas despegarán rumbo a una misión histórica que los llevará a orbitar la Luna por primera vez en más de medio siglo. Lo harán a bordo de Orión, la cápsula desarrollada por la NASA durante dos décadas y concebida como el pilar del programa Artemis. Sin embargo, este viaje no parte de un consenso absoluto. La nave despegará con un componente crítico —su escudo térmico— que ya mostró un comportamiento inesperado en un vuelo previo y que sigue generando dudas entre expertos, incluso después de años de análisis.
La NASA sostiene que el riesgo está identificado, estudiado y mitigado. Algunos ingenieros y exastronautas, en cambio, consideran que aún existen incógnitas relevantes. El debate no gira en torno a si la misión fallará, sino a cómo se interpreta el riesgo aceptable cuando hay vidas humanas en juego y datos limitados sobre el comportamiento real de un sistema en condiciones extremas.
La función esencial que desempeña el escudo térmico durante una misión lunar
El escudo térmico de Orión es una de las piezas más importantes de toda la nave. Su función es proteger a la cápsula —y a sus ocupantes— durante la fase más peligrosa del viaje: la reentrada a la atmósfera terrestre. Al regresar desde la Luna, Orión alcanzará velocidades superiores a 30 veces la del sonido, generando temperaturas externas que pueden superar los 2.700 grados Celsius.
Para enfrentar ese entorno extremo, el escudo está revestido con Avcoat, un material ablativo que ha sido creado para carbonizarse y desgastarse de manera controlada. En principio, este mecanismo dispersa progresivamente el calor y evita que penetre en el interior de la cápsula. La idea no es reciente: variantes de Avcoat ya se aplicaron con éxito durante las misiones Apolo.
El inconveniente apareció después del vuelo de prueba Artemis I, efectuado en 2022 sin tripulación; al revisar la cápsula tras su retorno, los ingenieros advirtieron que amplias secciones del escudo térmico se habían desprendido, generando cavidades profundas en su superficie. Aunque la nave volvió en buen estado y los estudios señalaron que, de haber llevado astronautas, estos habrían permanecido a salvo, el desempeño del material se alejó de lo previsto.
Este hallazgo obligó a la NASA a abrir una investigación extensa para comprender qué ocurrió exactamente durante la reentrada y si ese mismo fenómeno podría repetirse —o agravarse— en una misión tripulada.
Decisiones de diseño que se gestan desde la concepción del programa
Para entender el debate actual, es necesario retroceder varios años en la historia de Orión. Cuando la NASA decidió, en 2009, utilizar Avcoat como material del escudo térmico, lo hizo basándose en décadas de experiencia previa. Sin embargo, la forma de aplicar ese material sí cambió respecto a la era Apolo.
En los diseños iniciales, el escudo térmico se elaboraba mediante una intrincada estructura en forma de panal rellena de Avcoat, un enfoque que garantizaba un rendimiento muy estable, aunque implicaba procesos lentos, costosos y poco viables para una producción masiva. Para agilizar la fabricación, los responsables del programa decidieron adoptar una alternativa que empleaba grandes bloques del mismo material.
Desde el punto de vista industrial, la decisión tenía sentido: los bloques eran más fáciles de fabricar, probar e instalar. Sin embargo, Artemis I fue la primera ocasión en que este nuevo enfoque se probó en condiciones reales de reentrada lunar. Y fue precisamente ahí donde aparecieron las anomalías.
Los análisis posteriores concluyeron que el Avcoat utilizado no era lo suficientemente permeable. Durante la reentrada, los gases generados por el calentamiento quedaron atrapados dentro del material, provocando presión interna y, finalmente, el desprendimiento de fragmentos. El resultado fue un escudo térmico que, aunque cumplió su función básica, lo hizo de una manera que no estaba en los modelos originales.
Para entonces, el escudo térmico de Artemis II ya estaba fabricado e integrado en la cápsula. Reemplazarlo no era una opción realista ni en términos técnicos ni de calendario.
Una estrategia basada en modificar la reentrada
Ante la imposibilidad de sustituir el escudo térmico, la NASA decidió adoptar otra estrategia: modificar el perfil de reentrada de la nave. Orión fue concebida para ejecutar una “reentrada con salto”, una maniobra en la que la cápsula penetra por un instante en la atmósfera, asciende nuevamente y después desciende de manera definitiva. Este enfoque permite afinar con exactitud el lugar de amerizaje, aunque también expone al escudo térmico a complejos ciclos de calentamiento.
Para Artemis II, los ingenieros han modificado esta trayectoria. El nuevo plan reduce la altura y la intensidad del “rebote” inicial, con el objetivo de evitar las condiciones que provocaron el agrietamiento del escudo en Artemis I. Según la NASA, este ajuste permitirá que el Avcoat se erosione de manera más predecible y controlada.
Los encargados del programa afirman que la determinación se sustenta en un examen minucioso de datos, simulaciones por computadora y ensayos efectuados en laboratorio, y desde su óptica el riesgo residual se clasifica como moderado y aceptable dentro de los estándares establecidos por la agencia.
No todos comparten esa confianza.
Críticas diversas y un diálogo que trasciende esta misión
Algunos exastronautas y expertos en protección térmica consideran que cambiar la trayectoria de reentrada no elimina el problema de fondo. Para ellos, el comportamiento del Avcoat sigue siendo difícil de predecir con precisión, especialmente cuando se trata de cómo se forman y crecen las grietas una vez que el material empieza a fallar.
Uno de los puntos más debatidos es el uso de modelos computacionales para estimar el riesgo. Estas herramientas permiten simular la generación de gases, la carbonización del material y el inicio de grietas, pero no siempre pueden anticipar cómo evolucionarán esas grietas en condiciones reales. Según los críticos, esta limitación introduce un nivel de incertidumbre que no debería ignorarse en una misión tripulada.
Incluso entre los expertos que apoyan el lanzamiento existe consenso en un aspecto: el escudo térmico de Artemis II probablemente mostrará daños visibles tras el regreso a la Tierra. La diferencia está en la interpretación de ese hecho. Para la NASA y algunos asesores, el diseño de Orión incluye márgenes suficientes para tolerar ese deterioro sin comprometer la seguridad de la tripulación. Para otros, aceptar ese escenario implica operar demasiado cerca de un umbral crítico.
Debajo del Avcoat, Orión incorpora una estructura compuesta que en ensayos controlados ha probado soportar por un corto periodo temperaturas extremas; aunque no se concibió como una protección formal, funciona como un nivel extra de defensa. La NASA afirma que no prevé depender de ella, pero admite que aporta mayor solidez al sistema.
Lecciones históricas y la cultura del riesgo en la NASA
El debate sobre Artemis II no ocurre en el vacío. Para muchos veteranos de la agencia, está inevitablemente ligado a la historia del programa del transbordador espacial y a las tragedias del Challenger y el Columbia. En ambos casos, investigaciones posteriores señalaron fallas técnicas, pero también problemas culturales relacionados con la evaluación del riesgo y la presión por cumplir objetivos.
Algunos críticos ven paralelismos preocupantes: una confianza excesiva en modelos teóricos, la normalización de anomalías y una tendencia a interpretar resultados favorables como validaciones completas de procesos que aún tienen debilidades. Desde esta óptica, incluso un Artemis II exitoso podría reforzar una falsa sensación de seguridad.
Algunos dentro y fuera de la NASA descartan esa analogía, pues sostienen que la agencia ha aprendido de fallos previos, que actualmente opera con numerosas capas de verificación independiente y que la discusión vigente refleja, justamente, una cultura más dispuesta a admitir y examinar cuestionamientos técnicos.
La realidad probablemente se sitúe en un punto intermedio. La NASA reconoce que su historial no es perfecto, pero también sostiene que ningún avance significativo en exploración espacial ha estado exento de riesgos.
En el punto medio entre la seguridad técnica y la inevitable incertidumbre
A pocas semanas del lanzamiento, la decisión parece encaminada: Artemis II volará con tripulación. Los líderes del programa han reiterado que la seguridad es la máxima prioridad y que, con la información disponible, el riesgo está dentro de límites aceptables. Los astronautas asignados a la misión han expresado públicamente su confianza en el vehículo y en el trabajo de los ingenieros.
Sin embargo, incluso los partidarios de la misión reconocen que ciertos detalles del desempeño del escudo térmico solo podrán verificarse cuando la cápsula vuelva a ingresar en la atmósfera terrestre, pues hay factores que no pueden recrearse totalmente en tierra ni simularse con precisión absoluta.
Ese es, en última instancia, el núcleo del debate: hasta qué punto es razonable aceptar lo que no se puede saber con certeza. Para algunos, la exploración siempre implicará avanzar con información incompleta. Para otros, el margen actual aún deja demasiadas preguntas abiertas.
Lo que resulta evidente es que Artemis II no solo representará una operación técnica, sino que también funcionará como un examen de cómo la NASA combina innovación, cautela y presiones institucionales. El desenlace, sea cual sea, repercutirá en la percepción pública, en las decisiones venideras del programa Artemis y en la manera en que la agencia gestiona los riesgos propios de volver a enviar seres humanos más allá de la órbita terrestre baja.
Como han indicado incluso sus simpatizantes, poner en duda estas decisiones no constituye una postura contraria, sino que representa un paso fundamental dentro del propio proceso. La historia de la exploración espacial evidencia que el avance no proviene de una seguridad infalible, sino de la disposición a asimilar lecciones, rectificar y seguir adelante, recordando que en el espacio la física no hace concesiones y la fortuna no siempre está del mismo lado.
